If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+17z+18=0
a = 3; b = 17; c = +18;
Δ = b2-4ac
Δ = 172-4·3·18
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{73}}{2*3}=\frac{-17-\sqrt{73}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{73}}{2*3}=\frac{-17+\sqrt{73}}{6} $
| 28y+35+9=24y+40 | | 16+17v=-15+14v | | -x+1+3=9 | | 5-4x=x+13 | | x^-3=42 | | 12b-8b+4b=8 | | 3x+9=2x+ | | I-x+1I+3=9 | | 2.5+x=10 | | 19x3=x | | x+3x-2x-x=71/7 | | 4.5x4.5=3x+4.5 | | 3X+c/5+4c=3 | | 2(7)+y=48 | | 23=4n-7 | | 13=c+-12 | | 2m+8-4m=2 | | j+-19=-15.17 | | -5=(v+4)/2 | | -4(7n+3)=-12-n | | 5=1/3x-1 | | 9d=8+10d | | 4(w+1)-w=3(w-1)+1 | | 3c^2+7c+2=2c^2 | | 2x+31=7x-4 | | 10p-10=9p | | 3/5n+1=7 | | -4-5x+9=14+2x+54 | | 12g-11g=17 | | -3(-3-5x)=4x+42 | | -58=8n-10 | | -62=-m |